

14 MARCH 2016 MORE STRONG DRILLING RESULTS PROVIDE FURTHER SUPPORT FOR RESOURCE UPGRADE AND POTENTIAL SINGLE 1.8KM–LONG OPEN PIT AT JUPITER

Extensive in-fill drilling program at Jupiter nearing completion as 90,000m in-fill and extensional drilling program at Mt Morgans continues to make excellent progress

KEY POINTS

- Drilling at Doublejay returns both shallow high-grade intersections and extremely thick intersections immediately beneath the historic open pit. Latest results include:
 - o 12m @ 10.1 g/t Au from 39m
 - 6m @ 8.6 g/t Au from 42m
 - o 1m @ 39.8 g/t Au from 51m
 - o 139m @ 1.2 g/t Au from 75m (immediately below existing open pit)
 - o 167m @ 0.8 g/t Au from 162m (immediately below existing open pit)
 - o 89m @ 0.7 g/t Au from 216m (immediately below existing open pit)
 - o 18m @ 2.6 g/t Au from 148m
- Many of the new intersections lie outside the current 1.1Moz Jupiter Mineral Resource and outside the conceptual open pit designs used for the Mount Morgans Scoping Study
- The results continue to highlight the significant potential to increase the 1.1Moz Jupiter Mineral Resource
- They also continue to support Dacian's view that there is potential to combine the three conceptual open pits from the Scoping Study at Jupiter into a single 1.8km-long open pit
- Assays from 247 holes in the 313-hole, 34,000m Jupiter program have been received; most of the remaining 66 holes have been drilled and assays are awaited

Dacian Gold Ltd ("Dacian Gold" or "the Company") is pleased to announce that the ongoing 313hole in-fill and resource extension drilling program at the Jupiter Prospect, part of its 100%owned Mount Morgans Gold Project (MMGP) in Western Australia, continues to return outstanding results with the latest drilling returning both high grades and exceptional widths.

The highly successful program is rapidly nearing completion, with the latest batch of results from 109 RC holes returning a combination of shallow high-grade intersections and very thick mineralised intervals directly beneath the previously mined Doublejay open pit.

The results again highlight the potential to further increase the existing 1.1 million ounce resource at Jupiter and continue to support the Company's view that a single large 1.8km long open pit may be possible at Jupiter.

Dacian Executive Chairman Rohan Williams said the in-fill and extensional drilling program at Mount Morgans was continuing to make excellent progress, with latest results from the Jupiter prospect providing further strong evidence of the potential to grow the resource.

"We are continuing to intersect mineralisation outside the existing resource and the three pit shells contained in the Mt Morgans Scoping Study," Mr Williams said.

"Importantly, the latest results also include extremely wide intersections below the base of the previously-mined Doublejay pit (139m at 1.2g/t Au and 167m at 0.8g/t Au).

"With the drilling program at Jupiter now virtually finished and final assays awaited, we are on track to complete the revised Mineral Resource estimate for Jupiter in the June quarter.

"At the same time, drilling is continuing at Mt Morgan's Westralia Prospect with more results expected in coming weeks and a Mineral Resource update set for the September quarter.

"This timetable will see us complete the Feasibility Study by the end of this calendar year."

BACKGROUND

Dacian Gold is completing a major resource in-fill and extensional drill program totalling approximately 90,000m of RC and diamond drilling at its wholly owned Mt Morgans Gold Project (MMGP) located near Laverton in Western Australia. Drilling is focussing on the Jupiter and Westralia Prospects' Mineral Resources that were used in the MMGP Scoping Study, completed last year (see ASX announcement 30 September 2015).

Key outcomes from the MMGP Scoping Study showed the MMGP has the potential to deliver an initial 7 year life-of-mine producing 1.2 million ounces of gold at an AISC of A\$929/oz. Proposed mining at the Jupiter Prospect is estimated to produce 483,000 ounces and 745,000 ounces is estimated to be produced from the Westralia Prospect.

The 90,000m drill program comprises 313 RC drill holes (for approximately 34,000m) and 25 diamond drill holes (for 5,000m) at the Jupiter Prospect; and 129 diamond drill holes (for approximately 50,000m) at the Westralia Prospect.

Dacian Gold released the results of the first 138 holes at Jupiter to the ASX on 8 February 2016 (*Spectacular Results from Jupiter Drill-out Highlight Potential for Further Resource Growth at Mt Morgans Gold Project*); and the results from the first 17 holes at Westralia to the ASX on 11

February 2016 (*Excellent Results from First 17 Holes in Morgans Underground Drill-out, Westralia Prospect*).

This ASX announcement reports the results of the next 109 RC drill holes at Jupiter for a total of 12,150m drilled.

OBJECTIVES FOR THE JUPITER PROSPECT DRILL-OUT

- 1. Drill test for new mineralised positions <u>outside</u> the existing Jupiter Mineral Resource limits that may, if confirmed, increase the size of the conceptual open pits defined in the MMGP Scoping Study.
- 2. Complete the 40m x 40m infill drill program over the existing Jupiter Mineral Resource that sits inside, and immediately adjacent to, the three conceptual open pit designs of the MMGP Scoping Study, over a strike length of 1.8km.
- 3. Commence sterilisation drilling in areas where infrastructure may be considered (eg treatment plant site).
- 4. Commence a 5,000m diamond drilling program which will include geotechnical assessment of the proposed open pit designs.

NEW RESULTS FROM THE JUPITER DRILL-OUT

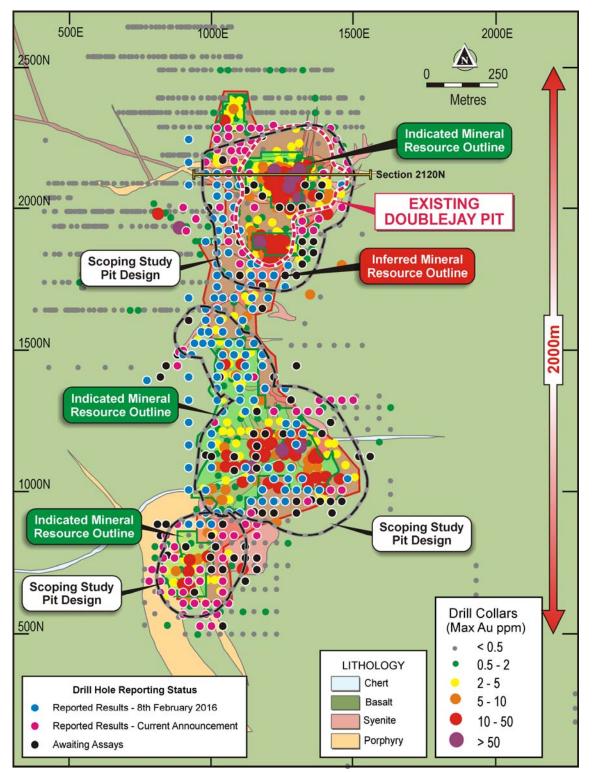
Numerous drill intersections have been returned from the 109 RC holes for 12,150m that are the subject of this ASX release. Table 3 at the rear of this announcement lists all results from the 109 RC drill holes.

Figure 1 shows the location of all 313 RC drill holes that comprise the Jupiter Prospect resource drill-out as well as the existing Mineral Resource and potential open pit outlines, as designed during the MMGP Scoping Study. Figure 1 also shows separately the drill holes that are the subject of this ASX release (pink dots); the drill holes released in the 8 February 2016 ASX announcement (blue dots) as well as those completed drill holes awaiting the return of assay results (black dots). It can be seen from Figure 1 that the majority of drill results the subject of this announcement are from around Doublejay in the north, and Ganymede in the south.

Key results from Objective points 1 and 2, as described above, are detailed in the following sections.

1. Drill-testing Outside Existing Jupiter Mineral Resource and Potential Open Pit Designs

As announced to the market on 8 February 2016, the initial results from the Jupiter drill-out confirmed extensive mineralisation exists outside the conceptual open pit shells used in the MMGP Scoping Study (see ASX announcement 30 September 2015). Reported drill intersections including 67m @ 5.0 g/t Au, 8m @ 26.3 g/t Au and 50m @ 1.5 g/t Au – all located outside the potential pit shells are testament to the impressive size of the Jupiter mineralised system, which is developed over a strike distance in excess of 2km.


In the 8 February 2016 announcement, Dacian Gold noted the drilling results highlighted the potential for the three separate conceptual open pits considered in the MMGP Scoping Study to merge into a single large pit measuring 1.8km long.

The drill results reported in this announcement further support the Company's belief that a single 1.8km long open pit may be possible at the Jupiter Prospect. In particular, Dacian Gold has identified a very thick zone of mineralisation that lies directly beneath the base of the previously mined Doublejay open pit. Down hole intersections of 139m @ 1.2 g/t Au, 167m @ 0.8 g/t Au, and 87m @ 0.7 g/t Au, are all sitting outside the existing Jupiter Mineral Resource and conceptual open pits, and thereby highlight a likely increase in both the Jupiter Mineral Resource and the potential open pit mine designs.

Table 1 lists all significant intersections that occur outside both the existing Mineral Resource and the conceptual open pit designs.

Figure 2 below is a cross-section through the Doublejay gold deposit at 2120N showing the locations on the very thick mineralisation lying immediately below the base of the existing Doublejay open pit *and* the conceptual open pit design completed as part of the MMGP Scoping Study.

Figure 1: Drill status plan of the 313 hole infill drilling program at Jupiter Prospect. Pink dots refer to drill holes the subject of this announcement; blue dots refer to drill holes described in the 8 February 2016 ASX release; and black dots refer to holes completed and awaiting assay. Also shown are previously released drill intersections (colour-coded for maximum gold-in-hole) as well as potential open pit designs from the MMGP Scoping Study. The trace of cross section 2120N shown in Figure 2 is seen through the Doublejay open pit.

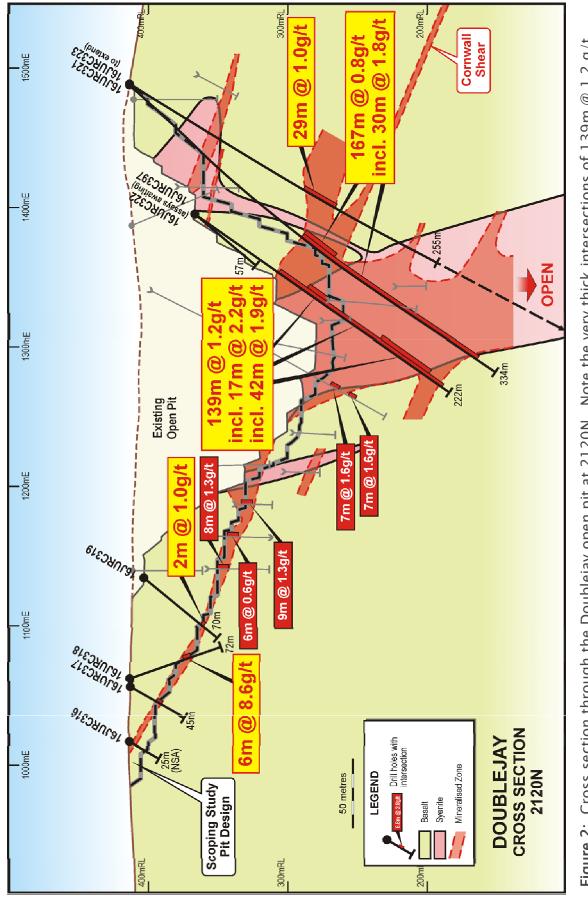


Figure 2: Cross section through the Doublejay open pit at 2120N. Note the very thick intersections of 139m @ 1.2 g/t Au and 167m @ 0.8 g/t Au lying directly below the existing open pit and the conceptual Scoping Study pit design (grey $^\prime$ black dashed line). Note also the shallow high grade intersection of 6m @ 8.6 g/t Au in 16JURC318.

Drill hole	Intersection	From	Comments
16JURC397	139m @ 1.2 g/t Au	75m	Doublejay intersections outside mineral resource
	includes		and outside conceptual pit shell
	17m @ 2.2 g/t Au	103m	
	and		
	42m @ 1.9 g/t Au	165m	
16JURC321	167m @ 0.8 g/t Au	162m	Doublejay intersection outside mineral resource
	includes		and outside conceptual pit shell
	30m @ 1.8 g/t Au	167m	
	and		
	14m @ 1.2 g/t Au	290m	
16JURC312		216m	Doublejay intersection outside mineral resource
	includes		and outside conceptual pit shell
	38m @ 1.1 g/t Au	267m	
16JURC076	9m @ 4.1 g/t Au	84m	Ganymede intersection outside mineral resource
			and outside conceptual pit shell
16JURC376	6m @ 5.1 g/t Au	84m	Heffernans intersection outside mineral resource
			and outside conceptual pit shell
16JURC336	6m @ 3.3 g/t Au	104m	Doublejay intersections outside mineral resource
	and		and outside conceptual pit shell
	13m @ 1.6 g/t Au	159m	
16JURC323	29m @ 1.0 g/t Au	142m	Doublejay intersection outside mineral resource
1.00000000		-	and outside conceptual pit shell
16JURC380	15m @ 1.5 g/t Au	7m	Heffernans intersection outside mineral resource
1.0000000000000000000000000000000000000			and outside conceptual pit shell
16JURC072	2m @ 6.4 g/t Au	88m	Ganymede intersection outside mineral resource
1 CHIP CLOO		10	and outside conceptual pit shell
16JURC100	8m @ 2.5g/t Au	19m	Ganymede intersection outside mineral resource
1600077		111.00	and outside conceptual pit shell
16JURC077	9m @ 1.6 g/t Au	111m	Ganymede intersection outside mineral resource
161100000	11m@10~/+ A	2m	and outside conceptual pit shell
16JURC335	11m @ 1.0 g/t Au	2111	Doublejay intersection outside mineral resource
161100007	7m@11~/+ ^	75m	and outside conceptual pit shell
16JURC097	7m @ 1.1 g/t Au	7 5111	Ganymede intersection outside mineral resource
16JURC329	6m @ 1.4 g/t Au	180m	and outside conceptual pit shell Doublejay intersections outside mineral resource
I UJUKC329	and	10011	and outside conceptual pit shell
	26m @ 0.6 g/t Au	251m	and outside conceptual pit shell
	2011 @ 0.0 y/t Au	2 J I I I I	

 Table 1: Significant new drill intersections outside the existing Jupiter Mineral Resource

2. Infill Drilling Within Jupiter Mineral Resource and Conceptual Open Pit Designs

The new 40m x 40m infill drilling results located within the Jupiter Mineral Resource and immediately adjacent to the conceptual open pit designs of the MMGP Scoping Study returned numerous significant results, as shown below in Table 2.

The majority of the infill-drilling completed within the existing Jupiter Mineral Resource was conducted around Doublejay and Ganymede (See Figure 1). Of the intersections listed in Table 2, the highest grade result of **12m** @ **10.1** g/t Au from 39m depth sits outside the Doublejay conceptual open pit and suggests an increase in the size of the open pit may be possible.

Drill hole	Intersection	From	Comments
16JURC332	12m @ 10.1 g/t Au	39m	Doublejay intersection, inside mineral resource,
			outside conceptual pit shell
16JURC318	6m @ 8.6 g/t Au	42m	Doublejay intersection, inside mineral resource,
			inside conceptual pit shell
16JURC312	18m @ 2.6 g/t Au	148m	Doublejay intersection, inside mineral resource,
			outside conceptual pit shell
16JURC279	1m @ 39.8 g/t Au	51m	Doublejay intersection, outside mineral resource,
			inside conceptual pit shell
16JURC086	2m @ 7.3 g/t Au	24m	Ganymede intersection, outside mineral resource,
			inside conceptual pit shell
16JURC277	15m @ 2.2g/t Au	154m	Doublejay intersection, inside mineral resource,
			outside conceptual pit shell
16JURC269	17m @ 1.6 g/t Au	120m	Doublejay intersection, inside mineral resource,
			inside conceptual pit shell
16JURC268	15m @ 1.5 g/t Au	151m	Doublejay intersection, inside mineral resource,
			inside conceptual pit shell
16JURC081	8m @ 2.0 g/t Au	10m	Ganymede intersection, outside mineral resource,
	and		inside conceptual pit shell
	15m @ 0.9 g/t Au	51m	Ganymede intersection, outside mineral resource,
			inside conceptual pit shell
16JURC242	8m @ 1.9 g/t Au	117m	Doublejay intersection, inside mineral resource,
			outside conceptual pit shell
16JURC077	9m @ 1.6 g/t Au	111m	Ganymede intersection, outside mineral resource,
		ļ	inside conceptual pit shell
16JURC243	5m @ 2.1 g/t Au	69m	Doublejay intersection, inside mineral resource,
			inside conceptual pit shell

16JURC160	6m @ 1.2 g/t Au	6m	Heffernans intersection, inside mineral resource, inside conceptual pit shell
16JURC286	7m @ 1.1 g/t Au	72m	Doublejay intersection, inside mineral resource,
			outside conceptual pit shell

Table 2: Significant results from the infill drilling program from within and immediately adjacent to the conceptual open pit designs (as labelled) used in the MMGP Scoping Study.

NEXT STEPS

The majority of the outstanding 66 RC drill holes that comprise the balance of the 313 hole Jupiter drill-out have been drilled and assays are awaited by the Company. Once all drill results have been received and reported, Dacian Gold will undertake a new Mineral Resource estimate for the Jupiter Prospect ahead of commencing an optimised open pit mine design. It is envisaged the new resource estimate and mine design will be incorporated into the MMGP Feasibility Study resulting in a maiden Ore Reserve for Jupiter due for completion by the end of CY2016.

Dacian Gold has commenced a 600 hole reconnaissance RAB/aircore drilling program over new targets in the Jupiter Prospect which comprise:

- Drill-testing the newly identified potential "syenite corridors"
- Drill-testing several untested bulls-eye magnetic anomalies identified from an ultradetailed ground magnetic geophysical survey (see ASX announcement 4 November 2015).

Any significant anomalism identified from the reconnaissance RAB/aircore drilling at Jupiter will be followed up with RC and diamond drill testing.

The Company is also continuing with its 50,000m diamond drilling infill program at the Westralia Prospect, with another update expected to be released to the ASX within two weeks.

For and on behalf of the Board

Rohan Williams Executive Chairman

		Collar Loca	ation and (Orientati	ion			Intersect	ion > 0.2pp	m Au and >1	g/t Au*i
Hole	Туре	x	Y	Z	Total Depth	Dip	Azimuth	From (m)	To (m)	Length (m)	Au (ppm)
15JURC150	RC	1,010	1,240	408	95	-59	277	8	10	2	0.8
15JURC183	RC	1,150	1,400	403	110	-65	273	83	84	1	2.1
15JURC190	RC	930	1,480	403	130	-60	270	95	100	5	1.1
16JURC061	RC	900	560	400	72	-60	270		No signif	icant assa	ys
16JURC062	RC	980	560	400	102	-60	270	35	36	1	4.3
								92	94	2	1.1
16JURC063	RC	900	600	400	78	-60	270		No signif	icant assa	ys
16JURC064	RC	940	600	400	50	-60	270			icant assa	ys
16JURC065	RC	980	600	400	126	-60	270	49	50	1	1.0
								67	68	1	2.7
								98	100	2	1.2
								107	111	4	0.8
16JURC066	RC	1,020	600	400	78	-60	270	43	44	1	1.1
								58	60	2	0.6
								64	70	6	1.1
16JURC067	RC	1,060	600	400	138	-60	270			icant assa	
16JURC068	RC	820	640	400	45	-60	270	11		icant assa	
16JURC069	RC	860	640	400	60	-60	270	11	12	1	1.5
								16 23	17 24	1 1	4.8 1.1
								55	24 57	2	2.3
16JURC070	RC	900	640	400	75	-60	270	18	19	1	1.7
16JURC072	RC	1,040	640	400	174	-60	270	65	66	1	1.7
1000110072	ne	1,010	010	100	171	00	270	88	90	2	6.4
								112	114	2	1.6
16JURC073	RC	780	680	400	30	-60	270			icant assa	
16JURC074	RC	820	680	400	50	-60	270	38	40	2	2.0
16JURC075	RC	920	680	400	96	-72	270	24	25	1	3.9
								39	52	13	0.8
								57	61	4	0.9
								66	69	3	0.7
								78	79	1	1.1
								87	88	1	2.3
16JURC076	RC	960	680	400	120	-55	270	1	5	4	0.5
								22	23	1	2.3
								50	52	2	1.2
								55	56	1	1.1
								66	67	1	1.2
								84	93	9	4.1
								106	109	3	0.7
								115	120	5	0.8

		Collar Loca	tion and	Orientati	on			ntersect	ion > 0.2ppm	n Au and >	1 g/t Au*n
16JURC077	RC	1040	680	400	190	-60	270	19	21	1	1.9
								49	50	1	5.1
								93	94	1	2.1
								101	104	3	1.4
								111	120	9	1.6
								127	130	3	1.3
								142	145	3	1.3
								170	171	1	1.2
16JURC079	RC	790	720	400	20	-60	270	2	3	1	0.8
16JURC080	RC	830	720	400	35	-60	270		No signifi	cant assa	ys
16JURC081	RC	960	720	400	102	-60	270	4	5	1	1.0
								10	18	8	2.0
								33	40	7	0.9
								51	66	15	0.9
								82	83	1	1.1
16JURC084	RC	830	760	400	39	-60	270		No signifi	cant assa	ys
16JURC085	RC	870	760	400	57	-61	268	5	6	1	, 3.0
								15	18	3	4.6
								45	48	3	0.6
16JURC086	RC	1,040	760	400	160	-55	270	11	12	1	3.5
		,						15	16	1	1.6
								24	26	2	7.3
								56	58	2	0.6
								98	108	10	0.7
								114	116	2	0.6
								125	127	2	2.1
								138	139	1	2.3
								142	144	2	1.0
16JURC090	RC	830	800	400	33	-61	269		No signifi		
16JURC091	RC	830	720	400	35	-60	273		No signifi		
16JURC095	RC	840	840	400	39	-60	270	16	21	5	1.1
16JURC097	RC	1,040	840	400	130	-60	272	49	51	2	2.4
1000110007	ne	1,040	040	400	150	00	272	75	82	7	1.1
16JURC098	RC	1,080	840	400	88	-60	270	/3	No signifi		
16JURC099	RC	1,080	840	400	111	-60	268	21	22	1	ys 1.5
10,0110033	ne	1,100	0+0	-100	111	00	200	98	99	1	1.5
16JURC100	RC	880	880	400	82	-60	270	19	27	8	2.5
10101/01/00	NC.	000	000	400	02	-00	270	74	27 75	o 1	2.5 4.6
	PC	1 1 2 0	000	100	102	60	270		62		
16JURC105	RC	1,120	880	400	102	-60	270	61 72		1	1.5
								72	75	3	1.1
								89	94	5	1.2

		Collar Loca	ation and (Orientatio	ntersection > 0.2ppm Au and >1 g/t Au*n						
16JURC106	RC	1,160	920	400	122	-60	270	18	19	1	5.0
								104	106	2	1.5
16JURC111	RC	1,140	920	400	112	-60	270	88	92	4	0.7
16JURC117	RC	1,340	960	398	113	-60	270		No signifi	cant assa	ys
16JURC128	RC	1,420	1,000	398	205	-60	270		No signifi	cant assa	ys
16JURC129	RC	1,460	1,000	398	174	-75	270	149	150	1	2.3
16JURC159	RC	1,220	1,280	416	113	-75	270	24	25	1	1.0
								33	34	1	1.0
								80	81	1	2.4
								99	102	3	1.5
16JURC160	RC	1,300	1,280	407	84	-50	270	16	22	6	1.2
								28	30	2	2.6
								43	45	2	0.6
								49	50	1	1.3
16JURC161	RC	1,340	1,280	401	-50	-50	270	35	36	1	1.4
								82	83	1	1.2
								125	127	2	2.3
								135	136	1	1.5
								139	140	1	1.0
16JURC162	RC	1,380	1,280	398	96	-60	270		9	9	0.9
								32	34	2	0.9
16JURC168	RC	1,380	1,320	398	78	-60	270	25	27	2	0.7
16JURC169	RC	1,380	1,320	398	25	-60	180	17	20	3	0.9
16JURC170	RC	1,420	1,320	398	25	-60	180		No signifi	cant assa	ys
16JURC171	RC	1,460	1,320	398	25	-60	180		No signifi	cant assa	ys
16JURC172	RC	1,500	1,320	398	25	-60	180		No signifi	cant assa	ys
16JURC232	RC	1,100	1,800	422	150	-60	270	52	54	2	0.5
16JURC241	RC	1,110	1,840	424	110	-90	360	92	96	4	1.2
16JURC242	RC	1,110	1,840	424	140	-70	90	8	11	3	16.4
								117	125	8	1.9
							incl.	122	125	3	4.1
16JURC243	RC	1,110	1,840	424	156	-55	90	69	74	5	2.1
								77	79	2	4.0
16JURC250	RC	1,063	1,880	420	60	-60	270	49	51	2	0.7
16JURC258	RC	911	1,918	423	70	-60	270	5	6	1	4.4
			-					10	12	2	0.7
								15	18	3	1.1
16JURC268	RC	1,303	1,920	415	200	-50	270	68	70	2	4.6
	-	,	, -	-			-	78	81	3	1.0
								151	166	15	1.5
								169	173	4	2.0
								179	180	1	1.5

		Collar Loca	ation and	Orientati	on			Intersection	on > 0.2ppn	n Au and >	1 g/t Au*n
16JURC269	RC	1,303	1,920	415	232	-60	270	4	9	5	0.7
								33	35	2	0.8
								81	84	3	1.5
								104	115	11	0.7
								120	137	17	1.6
								140	143	3	1.1
								162	169	7	0.7
								185	188	3	0.6
								212	214	2	1.4
								217	220	3	0.6
16JURC270	RC	1,360	1,920	413	310	-60	270	14	19	5	0.6
								97	98	1	1.4
								173	176	3	1.2
								214	218	4	0.5
								247	249	2	0.7
								252	259	7	0.7
								284	285	1	6.7
								298	302	4	0.6
16JURC271	RC	945	1,960	417	90	-60	270	54	59	5	0.7
16JURC274	RC	1,080	1,964	427	154	-60	270	23	24	1	5.3
								51	52	1	1.2
16JURC275	RC	1,080	1,964	427	88	-90	321		No signifi	cant assa	ys
16JURC277	RC	1,080	1,964	427	190	-50	90	121	125	4	0.6
								154	169	15	2.2
								176	177	1	1.0
16JURC279	RC	1,320	1,953	415	250	-55	270	9	11	2	1.2
								19	20	1	1.5
								51	52	1	39.8
								55	56	1	2.7
								65	67	2	2.2
								144	145	1	1.5
								157	166	9	0.6
								211	215	4	1.4
16JURC280	RC	900	2,000	425	90	-60	270	13	14	1	2.0
			-					59	62	3	1.2
16JURC282	RC	1,030	2,000	418	40	-60	270	13	14	1	1.2
16JURC285	RC	1,152	2,000	414	90	-60	269	32	36	4	0.8
	-	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					40	43	3	1.0
								69	72	3	1.1
								77	78	1	1.0
								81	85	4	0.7

		Collar Loca	ation and (Orientatio	on			ntersect	ion > 0.2ppn	n Au and >:	L g/t Au*n
16JURC286	RC	1,152	2,000	414	100	-88	273	72	79	7	1.1
								86	87	1	1.6
16JURC291	RC	1,460	2,000	418	280	-60	270	74	76	2	1.8
								95	102	7	0.7
16JURC312	RC	1,460	2,080	410	328	-54	274	35	38	3	2.1
								59	62	3	1.1
								66	68	2	0.9
								73	78	5	3.0
								85	87	2	0.6
								105	106	1	1.5
								148	166	18	2.6
								190	191	1	1.0
								216	305	89	0.7
							incl.	269	285	16	1.7
							or	267	305	38	1.1
16JURC318	RC	1,060	2,120	419	70	-72	90	30	31	1	1.2
								42	54	6	8.6
16JURC319	RC	1,135	2,120	403	70	-50	270	45	49	4	0.6
								52	56	4	0.8
16JURC321	RC	1,488	2,130	413	334	-47	273	108	109	1	1.5
								162	329	167	0.8
							incl.	167	197	30	1.8
							and	290	304	14	1.2
16JURC323	RC	1,489	2,130	413	255	-58	270	81	86	5	0.7
								113	115	2	1.0
								142	171	29	1.0
								186	188	2	0.7
								219	221	2	0.7
								230	236	6	0.5
								243	246	3	0.7
16JURC325	RC	980	2,161	418	40	-60	270		No signifi	cant assa	ys
16JURC327	RC	1,080	2,165	409	130	-60	270	1	3	2	1.0
								6	8	2	2.5
								24	25	1	1.0
16JURC329	RC	1,480	2,160	412	298	-63	272	155	157	2	1.0
								180	186	6	1.4
								212	215	3	0.9
								231	233	2	0.6
								238	239	1	1.0
								251	277	26	0.6
							incl.	268	277	9	0.9

		Collar Loca	ation and (Orientatio	on		ntersect	ion > 0.2ppm	n Au and >	1 g/t Au*	
16JURC330	RC	1,020	2,203	414	40	-60	268	9	10	1	1.7
16JURC331	RC	1,070	2,200	412	50	-60	270	37	39	2	2.0
								43	44	1	1.6
16JURC332	RC	1,100	2,200	411	142	-60	268	35	36	1	3.4
								39	51	12	10.1
16JURC333	RC	1,100	2,200	411	70	-88	280	21	23	2	4.8
								39	41	2	1.5
16JURC334	RC	1,120	2,200	409	133	-60	90	55	56	1	1.2
								77	87	10	1.2
16JURC335	RC	1,460	2,200	412	304	-49	269	2	13	11	1.0
								19	20	1	5.9
								33	34	1	1.2
								68	70	2	0.8
								149	154	5	0.7
								182	183	1	2.8
								271	272	1	4.1
16JURC336	RC	1,460	2,200	412	202	-69	270	104	110	6	3.3
								134	140	6	0.7
								149	154	5	1.0
								159	172	13	1.6
16JURC339	RC	1,020	2,240	417	110	-60	270	7	12	5	0.6
								41	43	2	0.9
								48	50	2	24.9
								82	85	3	11.6
16JURC340	RC	1,060	2,250	417	40	-60	270		No signifi	cant assa	VS
16JURC341	RC	1,101	2,227	413	60	-60	269	45	46	1	, 1.3
		,	,					50	51	1	2.2
16JURC342	RC	1,140	2,235	413	75	-60	268	52	59	7	1.1
16JURC343	RC	1,180	2,251	413	90	-60	274		No signifi		
16JURC344	RC	1,180	2,251	413	95	-89	101	71	75	4	0.9
16JURC345	RC	1,180	2,251	413	130	-70	93	58	61	3	1.0
2000110010		1)100	_)_01	.10	100		50	68	71	3	0.7
								94	101	7	0.9
16JURC349	RC	1,440	2,240	403	180	-50	271	8	101	2	1.7
	e	±,-+0	- , 2 -fU	.05	100	50	<i>L</i> / 1	25	28	3	0.9
								64	65	1	1.1
								158	170	12	1.1
16JURC350	RC	1,020	2,280	420	40	-60	270	100			
16JURC351	RC	1,020	2,280	420	50	-60	270	No significant assays No significant assays			
16JURC352	RC	1,000	2,280	420	65	-60	270	No significant assays			
16JURC353	RC	1,140	2,280	418	80	-60	270	50	53	3	ys 0.6

		Collar Loca	ation and	Orientatio	on			ntersection	on > 0.2ppm	Au and >1	.g/t Au*r
16JURC354	RC	1,180	2,280	416	94	-67	270		No signifi	cant assa	ys
16JURC355	RC	1,219	2,290	415	110	-60	270	27	29	2	1.3
								77	78	1	1.0
16JURC356	RC	1,219	2,290	415	120	-85	270	74	75	1	2.2
								84	88	4	2.0
16JURC357	RC	1,219	2,290	415	140	-75	90	27	31	4	0.8
								51	55	4	0.6
								102	105	3	1.9
16JURC358	RC	1,340	2,290	402	140	-60	270	97	98	1	1.1
								113	118	5	0.9
								123	124	1	1.7
16JURC359	RC	1,380	2,280	405	160	-59	272		No signifi	cant assa [.]	ys
16JURC360	RC	1,333	2,280	403	178	-60	271	32	33	1	1.6
								38	40	2	1.0
								47	58	11	0.5
								150	152	2	1.4
16JUDD361	DD	1,379	1,960	414	219	-50	270	22	23.9	1.9	1.5
								64.6	66.6	2.0	0.5
								180.35	184.85	4.5	1.2
								208	209	1.0	1.8
16JURC375	RC	880	1,440	402	150	-50	270	69	73	4	1.1
16JURC376	RC	880	1,440	402	100	-60	315	84	90	6	5.1
16JURC380	RC	885	1,490	403	34	-90	360	7	22	15	1.5
16JURC381	RC	900	1,495	403	30	-90	360		No signifi	cant assa	ys
16JURC386	RC	1,020	560	399	66	-60	0	37	38	1	2.5
16JURC387	RC	960	520	399	50	-60	270	28	29	1	1.0
16JURC388	RC	1,000	520	399	65	-60	270		No signifi	cant assa	ys
16JURC397	RC	1,400	2,120	366	214	-55	270	75	214	139	1.2
							incl.	103	120	17	2.2
							and	132	138	6	1.8
							and	165	207	42	1.9

About Dacian Gold Limited

The Mt Morgans Gold Project hosts high grade Mineral Resources of 3.0 million ounces at an average grade of 2.2 g/t gold. In addition, the Company has identified multiple exploration targets and resource extension opportunities. If proven, they will enable growth of the Mt Morgans' existing Mineral Resource and Ore Reserve base.

Dacian Gold has a strong Board and Management team which includes Rohan Williams as Executive Chairman; Robert Reynolds, Barry Patterson and Ian Cochrane as non-executive directors.

Dacian Gold's strategy at Mt Morgans is evolving toward potential mine development. It has identified two large mineralised systems at Westralia and Jupiter where it believes simultaneous mine development at each site is a possibility, and will be the subject of ongoing drilling and feasibility studies.

Dacian Gold is fully funded to complete the MMGP Feasibility Study, complete a major 90,000m resource in-fill drill program currently underway and maintain an active exploration program aimed at identifying new, high value mineral resources with the Mt Morgans project.

For further information visit: <u>www.daciangold.com.au</u> or please contact:

Rohan Williams	Paul Armstrong
Executive Chairman	Investor Relations
Dacian Gold Limited	Read Corporate Pty Ltd
+61 8 9226 4622	+61 8 9388 1474

	Mount Morgans Gold Project Mineral Resources as at 15 September 2015													
Deposit	Cut- off	Measured			l	Indicated			Inferred			Total Mineral Resource		
	Au g/t	Tonnes	Au g/t	Au Oz	Tonnes	Au g/t	Au Oz	Tonnes	Au g/t	Au Oz	Tonnes	Au g/t	Au Oz	
King Street*	0.5	-	-	-	-	-	-	532,000	2.0	33,000	532,000	2.0	33,000	
Jupiter	0.5	-	-	-	13,066,000	1.4	605,000	13,484,000	1.1	480,000	26,550,000	1.3	1,085,000	
Jupiter LG Stockpile	0.5	3,494,000	0.5	58,000	-	-	-	-	-	-	3,494,000	0.5	58,000	
Westralia	2.0	235,000	4.6	35,000	1,961,000	4.7	293,000	7,074,000	5.2	1,192,000	9,269,000	5.1	1,520,000	
Craic*	0.5	-	-	-	69,000	8.2	18,000	120,000	7.1	27,000	189,000	7.5	46,000	
Transvaal	2.0	367,000	5.8	68,000	404,000	5.3	69,000	482,000	4.7	73,000	1,253,000	5.2	210,000	
Ramornie	2.0	-	-	-	156,000	4.1	21,000	285,000	3.9	36,000	442,000	4.0	57,000	
Total		4,096,000	1.2	161,000	15,656,000	2.0	1,006,000	21,978,000	2.6	1,842,000	41,730,000	2.2	3,008,000	

<u>APPENDIX I</u>

Mount Morgans Gold Project Mineral Resources as at 15 September 2015

Mt Morgans Gold Project Ore Reserves as at 15 September 2015

Deposit	Cut-off Grade		Proved			Probable			Total	
Deposit	Au g/t	Tonnes	Au g/t	Au Oz	Tonnes	Au g/t	Au Oz	Tonnes	Au g/t	Au Oz
Craic	3.9	-	-	-	28,000	9.2	8,000	28,000	9.2	8,000
Total		-	-	-	28,000	9.2	8,000	28,000	9.2	8,000

In relation to Mineral Resources and Ore Reserves, the Company confirms that all material assumptions and technical parameters that underpin the relevant market announcement continue to apply and have not materially changed.

Competent Person Statement

Exploration

The information in this report that relates to Exploration Results is based on information compiled by Mr Rohan Williams who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Williams holds shares and options in, and is a director and full time employee of, Dacian Gold Ltd. Mr Williams has sufficient experience which is relevant to the style of mineralisation under consideration to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves." Mr Williams consents to the inclusion in the report of the matters based on the information compiled by him, in the form and context in which it appears.

Mineral Resources and Ore Reserves

The information in this report that relates the Westralia, Jupiter and Transvaal Mineral Resource (see ASX announcement – 16th September, 2015) and the Ramornie Mineral Resource (see ASX announcement – 24th February, 2015) is based on information compiled by Mr Shaun Searle who is a Member of Australian Institute of Geoscientists and a full time employee of RPM. Mr Searle has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which

he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Searle consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates the Jupiter Low Grade Stockpile (see ASX announcement – 16th September, 2015) and is based on information compiled by Mr Rohan Williams who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Williams holds shares and options in, and is a director and full time employee of, Dacian Gold Ltd. Mr Williams has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Williams consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Mineral Resources (other than Westralia, Jupiter, Jupiter Low Grade Stockpile, Transvaal, and Ramornie which are reported under JORC 2012) is based on information compiled by Mr Rohan Williams, who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Williams holds shares and options in, and is a director and full time employee of, Dacian Gold Ltd.

Where the Company refers to the Mineral Resources in this report (referencing this release made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the resource estimate with that announcement continue to apply and have not materially changed.

The information in this report that relates to Ore Reserves is based on information compiled by Mr Bill Frazer, a director and full time employee of Mining One Pty Ltd and a Member of The Australasian Institute of Mining and Metallurgy. Mr. Williams and Mr Frazer have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2004 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Williams and Mr Frazer consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

All information relating to Mineral Resources and Ore Reserves (other than the King Street and Craic) were prepared and disclosed under the JORC Code 2012. The JORC Code 2004 Mineral Resource and Ore Reserve have not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last updated.

APPENDIX II – JORC TABLE 1

The following Table and Sections are provided to ensure compliance with the JORC Code (2012) edition requirements for the reporting of exploration results on the Mt Morgans Project which includes both <u>Westralia</u> and <u>Jupiter</u>.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 drilling. Holes were generally angled towards grid west to optimally intersect the targeted mineralised zones. Dacian core was sampled as half core at 1m intervals or to geological contacts To ensure representative sampling, half core samples were always taken from the same side of the core. At Jupiter the full length of each hole was sampled and at Westralia the core was selectively sampled. Dacian RC drilling was sampled at 1m intervals via an on-board cone splitter. Minor 4m composite samples were taken via a scoop and submitted for analysis.
Drilling techniques	• Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling was carried out with NQ2 sized equipment with standard tube. Drill core was orientated using a Reflex orientation tool. For RC holes, a 5¼" face sampling bit was used For deeper holes, RC pre-collars

GOLD LIMITED

Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 were followed with diamond tails. Recoveries from historical drilling are unknown. Recoveries from Dacian core drilling were measured and recorded in the database and recovery was generally 100% in fresh rock with minor core loss in oxide. In Dacian drilling no relationship exists between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All diamond drill holes were logged for recovery, RQD, geology and structure. RC drilling was logged for various geological attributes. For Dacian drilling, diamond core was photographed both wet and dry. All drill holes were logged in full.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Dacian core was cut in half using an automatic core saw at either 1m intervals or to geological contacts. To ensure representivity, all core samples were collected from the same side of the core. Historical RC samples were collected at the rig using riffle splitters. Samples were generally dry. Dacian RC samples were collected via on-board cone splitters. Most samples were dry. For RC drilling, sample quality was maintained by monitoring sample volume and by cleaning splitters on a regular basis. Field duplicates were taken at 1 in 25 for RC drilling. Sample preparation was conducted by a contract laboratory. After drying, the sample is subject to a primary crush, then pulverised to that 90% passing 75µm.

			information on the QAQC
			programs used was not available.
			Sample sizes are considered
		-	appropriate to correctly represent
			the gold mineralisation based on:
			_
			the style of mineralisation, the
			thickness and consistency of the
			intersections, the sampling
			methodology and assay value ranges for Au.
Quality of	• The nature, quality and appropriateness of the	٠	For Dacian drilling, the analytical
assay data	assaying and laboratory procedures used and		technique used was a 50g Lead
and	whether the technique is considered partial or		collection fire assay. Analysed by
laboratory	total.		Inductively Coupled Plasma
tests			Optical (Atomic) Emission
	• For geophysical tools, spectrometers, handheld	•	Spectrometry. This is a full
	XRF instruments, etc, the parameters used in		digestion technique. Samples
	determining the analysis including instrument		were analysed at Intertek
	make and model, reading times, calibrations		Genalysis in Maddington, Western
	factors applied and their derivation, etc.		Australia.
	• Nature of quality control procedures adopted	•	For Dacian drilling, sieve analysis
	(eg standards, blanks, duplicates, external		was carried out by the laboratory
	laboratory checks) and whether acceptable		to ensure the grind size of 90%
	levels of accuracy (ie lack of bias) and precision		passing 75µm was being attained.
	have been established.	•	For Dacian drilling, QAQC
			procedures involved the use of
			certified reference materials (1 in
			20) and blanks (1 in 50). Results
			were assessed as each laboratory
			batch was received and were
			acceptable in all cases
		•	No QAQC data has been reviewed
			for historic drilling although mine
			production has largely validated
			drilling results.
		•	Laboratory QAQC includes the use
			of internal standards using
			certified reference material,
			blanks, splits and replicates.
			Certified reference materials
			demonstrate that sample assay
			values are accurate.
			At both Jupiter and Westralia,
			umpire laboratory testwork was
			completed in January 2014 over mineralised intersections with
			good correlation of results.
		•	The Intertek preparation lab in
			Kalgoorlie was audited by Dacian

		in January 2016
Verification	• The verification of significant intersections by	in January 2016. • At Jupiter and Westralia,
of sampling & assaying	 The vermeation of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry 	 significant intersections were visually field verified by company geologists. At Westralia, significant intersections from seven Dacian
	procedures, data verification, data storage (physical and electronic) protocols.	holes were re-assayed by screen fire assay with good repeatability of results
	• Discuss any adjustment to assay data.	 No twin holes were drilled. Primary data was collected into either an Excel spread sheet and then imported into a Data Shed database.
		 Assay values that were below detection limit were adjusted to equal half of the detection limit value.
<i>Location of data points</i>	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 Historic drill hole collar coordinates were tied to a local grid with subsequent conversion to MGA94 Zone 51. Mine workings support the locations of historic drilling.
	• <i>Quality and adequacy of topographic control.</i>	 All Dacian hole collars were surveyed in MGA94 Zone 51grid using differential GPS. Dacian holes at Jupiter were downhole surveyed either with multi-shot EMS or Reflex multi- shot tool.
		 Dacian holes at Westralia were downhole surveyed by Gyro Australia using a north seeking gyro tool. Topographic surface prepared from detailed ground and mine surveys.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 At Jupiter, the nominal hole spacing of Dacian drilling is approximately 40 –80m.

Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 to 245°, which is approximately perpendicular to the orientation of the well-defined mineralisation. At Jupiter, most holes are angled to the west so that intersections are orthogonal to the expected trend of mineralisation. No orientation based sampling bias has been identified in the
Sample security	• The measures taken to ensure sample security.	 data. Chain of custody is managed by Dacian. Samples are stored on site until collected for transport to Intertek Laboratories in Kalgoorlie. Dacian personnel have no contact with the samples once they are picked up for transport. Tracking sheets have been set up to track the progress of samples.
Audits or reviews	• <i>The results of any audits or reviews of sampling techniques and data.</i>	· • • ·

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	• The Jupiter deposit is located within Mining Lease 39/236, which is wholly owned by Dacian and subject to a 1%
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 At Westralia, open pit and underground mining has occurred since the 1890's. Other companies to have explored the deposit include Whim Creek Consolidated NL, Dominion Mining, Plutonic Resources, Homestake Gold and Barrick Gold Corporation. At Jupiter, open pit mining occurred in the 1990's. Previous companies to have explored the deposit include Croesus Mining, Dominion Mining and Barrick Gold Corporation.
<i>Geology</i>	• <i>Deposit type, geological setting and style of mineralisation.</i>	 The Westralia gold deposit is Archaean BIF hosted sulphide replacement mineralisation and is located within the Yilgarn Craton of Western Australia. The Jupiter prospect is interpreted to comprise structurally controlled mesothermal gold mineralisation related to syenite intrusions within altered basalt.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	 For drilling not previously reported, the locations and mineralised intersections for all holes completed are summarised in Tables 4 in the body of this ASX release. Refer to previous Dacian ASX releases for information regarding previous Dacian drilling. Reporting of intersection widths in Figures and summary tables is

	 down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	rounded to the nearest 0.1m.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Exploration results are reported as length weighted averages of the individual sample intervals. Zones of particularly high grade gold mineralisation have been separately reported in the tables in the body of this ASX release. No high grade cuts have been applied to the reporting of exploration results. At Westralia, intersections have been reported using a 0.5g/t lower cut-off, and can include up to 4m of internal dilution. At Jupiter, intersections have been reported using a 0.2g/t lower cut-off, and can include up to 4m of internal dilution. No metal equivalent values have been used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g.'down hole length, true width not known'). 	 At Westralia, drill holes are angled to 245°, which is approximately perpendicular to the orientation of the well-defined mineralised trend and true width is approximately 60–90% of down hole intersections. At Jupiter, most holes are angled to the west so that intersections are orthogonal to the expected trend of mineralisation. It is interpreted that true width is approximately 60–100% of down hole intersections.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Relevant diagrams have been included within the main body of text.

Balanced	Accuracy and quality of surveys used to All exploration results have been
Reporting	<i>locate drill holes (collar and down-hole</i> reported. <i>surveys), trenches, mine workings and</i> <i>other locations used in Mineral Resource</i> <i>estimation.</i>
	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.
<i>Other substantive exploration data</i>	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. All interpretations for both Westralia and Jupiter mineralisation are consistent with observations made and information gained during previous mining at the project.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. At Jupiter, further broad spaced drilling is planned to define the structural controls and mineralisation potential of the Jupiter Corridor. Infill resource definition drilling along the Cornwall Shear will continue. At Westralia, infill resource definition drilling is planned to improve confidence of the known mineralisation over 3km of strike length and extensional drilling is planned around the boundaries of the resource. Refer to diagrams in the body of this release.